
LEGO NXT: Features & Limitations

NXT Brick

The main component in the kit is a brick-shaped computer called the NXT brick. It can take input from up
to four sensors and control up to three motors, via RJ12 cables, very similar to but incompatible with

RJ11 phone cords. The brick has a 100x64 pixel monochrome LCD display
and four buttons that can be used to navigate a user interface using
hierarchical menus. It also has a speaker and can play sound files at
sampling rates up to 8 kHz. Power is supplied by 6 AA (1.5 V each)
batteries in the consumer version of the kit and by a Li-Ion rechargeable
battery and charger in the educational version.

Technical Specifications
 32-bit AT91SAM7S256 main microprocessor (256 KB flash memory, 64 KB RAM)

 8-bit ATmega48 microcontroller @ 4 MHz (4 KB flash memory, 512 Bytes RAM)

 100x64 pixel LCD matrix display

 Can be programmed using Windows or Mac OS (NBC/NXC supports Linux as well)

 A single USB 2.0 port

 Bluetooth (Class II) wireless connectivity, to transfer programs to the NXT wirelessly or offer
ways to control robots remotely (through mobile phones and possibly by PDA's)

 4 input ports, 6-wire cable digital platform (One port includes a IEC 61158 Fieldbus Type 4/EN 50
170 compliant expansion port for future use)

 3 output ports, 6-wire cable digital platform

 Digital Wire Interface, allowing for third-party development of external devices

 Other software can also be used.

Firmware and Developer Kits
Lego has released the firmware for the NXT Intelligent Brick as Open Source.
Several developer kits are available that contain documentation for the NXT:

 Software Developer Kit (SDK), includes information on host USB drivers, executable file format,
and byte code reference

 Hardware Developer Kit (HDK), includes documentation and schematics for the NXT brick and
sensors

 Bluetooth Developer Kit (BDK), documents the protocols used for Bluetooth communications

Memory
The NXT uses a 32-bit ARM7 microprocessor with 256 Kbytes of Flash and 64 Kbytes of Ram. Flash
memory can be read like RAM (access is a bit slower) but can only be written in 256-byte pages
(maximum of 767 pages) by specific hardware instructions. Flash memory cannot be read while a page is
being written. The first two pages hold the file table (directory) and the rest of the pages hold user files.
Files are held as a contiguous set of bytes – i.e. they use a single range of page numbers with no gaps.
This allows a file to be addressed as a region of memory.

http://en.academic.ru/dic.nsf/enwiki/46583
http://en.academic.ru/dic.nsf/enwiki/29389
http://en.academic.ru/dic.nsf/enwiki/774438
http://en.academic.ru/dic.nsf/enwiki/11131323
http://en.academic.ru/dic.nsf/enwiki/790289
http://en.academic.ru/dic.nsf/enwiki/60946
http://en.academic.ru/dic.nsf/enwiki/11416
http://en.academic.ru/dic.nsf/enwiki/19709
http://en.academic.ru/dic.nsf/enwiki/14130
http://en.academic.ru/dic.nsf/enwiki/788166
http://en.academic.ru/dic.nsf/enwiki/788166
http://en.academic.ru/dic.nsf/enwiki/11107

 The leJOS NXJ firmware is written in a combination of C and ARM assembler code. It consists of the
initialization code, the Java VM and device drivers for all the hardware subsystems. The leJOS firmware
is a complete firmware replacement and has no reliance on the standard LEGO firmware. The first 32kb
of flash memory is allocated to the leJOS NXJ firmware. Most code is executed from flash memory, but a
small amount (e.g. the code that writes pages of flash memory) is copied to RAM. Read-only data is held
in flash memory but read/write data is copied to RAM. The firmware uses a fixed size stack and interrupt
stack.

The leJOS NXJ Java VM executes one Java program at a time. This can either be a user program or the
leJOS start-up menu. One Java program can execute another. When this is done the first Java program is
removed from memory, and the second one is then executed. This is how the start-up menu executes
user programs.

The start-up menu occupies up to 48kb of memory that starts at address 32k (i.e. after the end of the
firmware). The last word of the 48kb allocated to the start-up menu holds the size of the start-up menu).
Java programs execute from flash memory. Static read-only data is held in flash memory. Static read-
write data is copied to RAM. Objects are created in a heap that starts at the top of the RAM and grows
downwards. The Java stack starts at the bottom of free RAM memory and grows up. A garbage collector
frees memory used by un-referenced objects when the heap becomes full.

The maximum filename length is 20 characters. If the average filename length is 15 characters, only 10
files can be supported. This limitation is not checked, and will cause an exception when the file table
becomes full. Also, only one file can be open at a time.

Power Supply
Power is supplied to the NXT using 6 AA/LR6 batteries or a rechargeable battery pack with a power
adapter plug (120VAC 60Hz). The rechargeable battery pack takes up more physical space than 6 AA
batteries. The NXT comes with a cover that sits flush with the NXT unit while the rechargeable battery
pack protrudes almost a centimetre out from the NXT brick. When one builds a robot from existing
build instructions, this will have to be taken into account.

When charging the NXT, the green indicator light turns on. When the battery is recharging, the red light
is on. A fully charged battery requires approximately four hours. The NXT can be used when the battery
is recharging; however, recharging then requires more time. The Li-Ion Polymer battery can be
recharged up to 500 times.

There is a difference in performance (power and time) when it comes to using 6 AA’s vs. the
rechargeable battery pack. 6 AA’s will provide more power to the NXT motors than the Li-Ion battery
pack will. In fact, in competitions, the preferred choice is Energizer Lithium batteries over conventional
alkaline batteries, when power is of the utmost importance. Although the Li-Ion battery pack provides
less power than 6 AA’s, it delivers more steady power over a longer period of time.

It is difficult to quantify the time it takes to fully discharge the alkaline batteries or the Li-Ion battery
pack. This depends on what types of tasks the NXT is performing (all motors turning at full speed, or just
data calculations). One thing is for certain, as the batteries begin to deplete, the power of the motors
begin to deplete as well.

The NXT has a sleep option to conserve power. These settings can be changed in the menu system
under ‘Settings/Sleep/Never’. You can change the Settings to wait before going to sleep from 2, 5, 10,
30 or 60 minutes.

Usable Programming Languages

Very simple programs can be created using the menu on the NXT Intelligent Brick. More complicated
programs and sound files can be downloaded using a USB port or wirelessly using Bluetooth. Files can
also be copied between two NXT bricks wirelessly, and some mobile phones can be used as a remote
control. Up to three NXT bricks can communicate simultaneously (via Bluetooth) when user created
programs are run.

The retail version of the kit includes software for writing programs that run on PC and Macintosh
personal computers. The software is based on National Instruments LabVIEW and provides a visual
programming language for writing simple programs and downloading them to the NXT Brick.

NXT-G
NXT-G v1.0 is the programming software that comes bundled with the NXT. There are two different
programming interfaces. One is included with the retail and educational kits and the other can be
purchased separately. This software is adequate for basic programming, such as driving motors,
incorporating sensor inputs, doing calculations, and learning simplified programming structures and flow
control. Here are some advantages and disadvantages of using version 1.0 of this software:

Pros:

 NXT-G is easy to install on Windows XP, Windows Vista and Windows 7 machines, and Mac OS X is
also supported.

 NXT-G can transfer data via Bluetooth or included USB cable.

 NXT-G provides an easy to use, drag and drop, graphical environment.

 The graphics include data wires that show data flow from block to block.

Cons:

 NXT programs can be much larger than identical programs developed with a third party
programming language (e.g. 12 kiB versus 2 kiB).

 Programs take substantially longer to load than third party programs.

 When creating large programs, NXT-G tends to crash and lose unsaved data.

 NXT-G software usually runs sluggishly, even on powerful PCs.

Most of these issues have been addressed in NXT-G v1.1 version of the software.

Unofficial Programming Languages
While NXT-G provides a colourful and user friendly approach to programming NXT robots, more
advanced robot builders and programmers may prefer programming with a text-based language, which
involves writing lines of code rather than dragging and dropping code blocks. There is quite a large
variety of unofficial text-based languages for the NXT freely available on the Internet. Generally
speaking, these programming languages offer greater control but can be more difficult to learn. An
extensive (but not exhaustive) list follows:

http://www.ni.com/labview/

Name Language type(s) Notes

Actor-Lab Custom flowchart-like
language

Ada Ada Requires nxtOSEK

brickOS C/C++

Ch C/C++ Interpreter Control Lego Mindstorm in C/C++ interactively
without compilation

FLL NXT
Navigation

Uses NXT-G and .txt files

GCC C/C++, Objective C, Fortran,
Java, Ada among others

jaraco.nxt Python Python modules providing low-level interfaces for
controlling a Lego NXT brick via Bluetooth. Also
includes code for controlling motors with an Xbox 360
controller using pyglet.

LabVIEW National Instruments
LabVIEW Visual
programming language (G
code)

Core language used to develop Mindstorms NXT
software. Can use available add-on kit to create and
download programs to NXT, create original NXT blocks
or control robot directly via USB or Bluetooth using
NXT fantom.dll

Lego.NET Anything that can compile
to .NET, works best with C#

Does not come with a compiler, converts bytecode to
machine code

Lego::NXT Perl Set of Perl modules providing real-time low-level
control of a Lego NXT brick over Bluetooth.

LegoNXTRemote Objective C Remote control program for remotely operating and
programming a Lego NXT Brick. Supports NXT 2.0 and
1.0, sensors, all 3 motors, automatic "steering"
control, and running preloaded programs.

leJOS Java A java based system for advanced programmers can
handle most sensors and things like GPS, speech
recognition and mapping technology. Can be
interfaced with the Eclipse IDE or run from the
command line

NXTGCC Assembler, C, makefiles,
Eclipse, etc.

The first GCC toolchain for programming the Lego
Mindstorms NXT firmware.

nxtOSEK C

librcx C/C++ A library for GCC

MicroWorlds EX
Robotics Edition

 This is a program in the MicroWorlds series that
allows students to control the NXT.

NQC NQC, a C-like language This is the most widely used unofficial language

http://www.enotes.com/topic/C_(programming_language)

Name Language type(s) Notes

NXT++ C++ Allows you to control the NXT directly from any C++
program, in Visual Studio, Windows.

NXT_Python Python NXT_Python is a package for controlling a LEGO NXT
robot using the Python programming language. It can
communicate using either USB or Bluetooth.

NXT-Python Python NXT-Python is a newer version of NXT_Python, and
has some extra capabilities. The svn repository is at
Google code. Anyone can contribute, just ask.

Lestat C++ Allows you to control the NXT directly from any C++
program in Linux.

OCaml Mindstorm OCaml Module to control LEGO NXT robots using OCaml
through the Bluetooth and USB interfaces.

Mindstorms SDK Visual Basic, Visual C++,
MindScript, LASM

You do not need VB to use the VB features as MS
Office comes with a cut down version of VB for making
macros

PBrickDev PBrickDev, a flowchart
based language.

Has more functionality than the RIS language, such as
datalogs and subroutines/multithreading.

PRO-BOT A kind of Visual
Basic/spirit.ocx-based
language

Designed for robots which are in contact with the
workstation at all times

QuiteC C A library for use with GCC and comes with GCC for
Windows.

RCX Code RCX Code, a custom
flowchart-based language

Included in the Mindstorms consumer version sold at
toy store

ROBOLAB A flowchart language based
on LabVIEW

This is the programming environment offered to
schools who use MindStorms, supports the Lego Cam

RoboRealm A multi-platform language
that works with IRobot
Roomba, NXT, RCX, VEX, and
many other popular robotic
sets.

This language is also capable for video processing
using a webcam; this gives your robot excellent vision
since it can filter out certain colors, lock-on to a
certain area of color, display variables from the robot
or computer, and much more. The software works
with keyboard, joystick, and mouse. This software is
freeware.

ROBOTC A multi-platform C
programming language
designed for the
programmer in need of
powerful debugging tools
for the NXT, RCX, VEX, and
soon-to-be FIRST Controller
(for FRC).

ROBOTC gives the ability to use a text-based language
based on the C programming language. It includes
built-in debugger tools, as well as (but not limited to)
code templates, Math/Trig operations (sin, cos, tan,
asin, acos... etc), user-friendly auto-complete function
built into the interface, built-in sample programs

Name Language type(s) Notes

ruby-nxt Ruby Provides low-level access to the NXT via Bluetooth as
well as some preliminary high-level functionality.

RWTH –
Mindstorms NXT
Toolbox

MATLAB Interface to control the NXT from MATLAB via
Bluetooth or USB (open-source).

Gostai URBI for
Lego Mindstorms
NXT

URBI, C++, Java, Matlab Easy to use parallel and event-driven script language
with a component architecture and open source
interface to many programming languages. It also
offers voice/speech recognition/synthesis, face
recognition/detection, Simultaneous localization and
mapping, etc.

Vision Command RCX Code The official programming language for use with the
Lego Cam. It allows you to control your robot with
color, motion, and flashes of light.

LegoLog Prolog Uses an NQC program to interpret commands send
from the PC running the Prolog code

Microsoft Visual
Programming
Language (VPL)

Graphical flowchart, based
on .NET

With the Microsoft Robotics Studio, it uses a native
NXT program msrs to send and receive messages to
and from a controlling program on a computer via
Bluetooth

DialogOS Graphical Flowchart for
voice controlled robots

DialogOS combines speech recognition and speech
synthesis with robotics, enabling you to build talking
robots that react to your voice commands.

Processing Java (Simplified /
programmed C-style)

Processing (programming language) is an open source
programming language and environment for people
who want to program images, animation, and
interactions. It is used by students, artists, designers,
researchers, and hobbyists for learning, prototyping,
and production. To control the NXT with Processing
you can use the NXTComm Processing library
developed by Jorge Cardoso.

Interactive C C-style language. Language developed for the Botball robotics
competition

pbLua API for the Lua
programming language for
the Mindstorms NXT, text-
based

pBLua: ... is written in portable C, with minimal
runtime requirements; can be compiled on the fly on
NXT; is a small, easy to read, and easy to write
language; has extensive documentation available
online and in dead-tree format, and a very friendly
newsgroup

Sensors

One of the most important components of a robot is the sensor. Much of the NXT set’s potential lies in
its excellent selection of sensors. The primary purpose of a sensor is to allow the robot to interact with
its environment and perform actions based on feedback from its surroundings.

This process is called autonomy, which by definition means freedom from external law. An autonomous
robot is a self-governing device that takes input from its sensors and makes decisions based on this
input.

Passive Sensors
The NXT set includes three passive sensors: the touch sensor, the light sensor, and the sound sensor.
Passive sensors either do not require power from the NXT in order to function or do not require the NXT
to employ a process that rapidly switches between supplying power to and reading the value of a
sensor.

Touch Sensor
The touch sensor is useful for a wide variety of applications. The orange missile-shaped tip at the front

end, known as the push button, provides the touch-sensing abilities. When pressed, the push button

moves backward into the sensor and completes an electrical

circuit, resulting in a flow of electricity detectable by the NXT.

When released, the push button springs forward, the circuit is

broken, and the electrical flow stops. Hence, this simple

configuration allows for only two possible conditions: pressed

or released.

Just as the touch sensor can have two different conditions, it
can produce two different values or readings. If the push button is pressed, the NXT reads the touch
sensor as having a value of 1; if it’s not pressed the NXT reads a value of 0. You can use these values in

several ways, however. For example, you can use any of the following conditions to trigger a reaction in
a robot:

 When the touch sensor is pressed

 When the touch sensor is released

 When the touch sensor is pressed and released (i.e., “bumped”)

If you look closely at the push button, you’ll notice a shaft shaped hole. This hole accommodates LEGO
axles, allowing you to customize the push button. You can use the touch Sensor to make your robot pick
up things: a robotic arm equipped with a Touch Sensor lets the robot know whether or not there is
something in its arm to grab. Or you can use a Touch Sensor to make your robot act on a command. For
example, by pressing the Touch Sensor you can make your robot walk, talk, close a door, or turn on your
TV.

Light Sensor
Capable of measuring light intensity, the NXT light sensor can determine the brightness or darkness of
its surrounding area as well as the light intensity of surfaces, enabling it to (indirectly) distinguish

between surfaces of different colors. The NXT generates the
light sensor’s readings as a percentage. The highest possible
reading is 100 percent, which you can easily achieve by holding
the sensor up to a light bulb. The lowest possible reading is 0
percent, which you could achieve in a very dark closet.

If you look at the front of the light sensor, you’ll notice two
small bulbs poking out. The one on top is a phototransistor,
which measures the light; the one on the bottom is a light-

emitting diode (LED), which shines a bright red light. When the light sensor is positioned closely to a
surface, the LED increases the amount of reflected light that the sensor reads; likewise increasing the
sensor’s sensitivity to different colors (different colors reflect light differently). You can turn off the LED
in a program, however, if you want the light sensor to detect only the surrounding or ambient light.

You can use the light sensor to create line following robots that use the light sensor to follow a line. Or
perhaps you could create a robot that uses the light sensor to measure a room’s overall light level and
leaves the room when you turn off the lights.

Sound Sensor
The NXT sound sensor can not only detect the volume of sound (amplitude) but also sound patterns.
While it cannot distinguish between types of sounds, such as between the sound of a bird and the sound

of a cat, it still allows from many creative applications.

Although the NXT reads the sound sensor’s value in decibels (dB,
includes sounds inaudible to humans) or adjusted decibels (dBA, only
sounds audible to humans), it reports the value as a percentage, with
100 percent being the highest and 0 percent being the lowest. For
example, a silent room will return a value of 4 to 5 percent, distant
talking will return a value of 5 to 10 percent, and a regular
conversation or music playing at a moderate volume will return a value

of 10 to 30 percent, and yelling or loud music will return a value of 30 to 100 percent. The maximum

sound level that the sound sensor can determine is 90 dB (about the level of a lawnmower). It can hear
samples between 20 and 30 Hz (not fast enough to recognize human speech).

The sound sensor definitely provides exciting possibilities for NXT robots. One of the simplest
applications is a sound-activated robot that begins to operate and/or stops operating upon hearing a
loud sound (such as a verbal command). Another possibility is a robot that attempts to escape from
sound by finding a more peaceful spot.

Digital Sensors
The NXT set includes three types of Digital Sensors: the ultrasonic sensor, the colour sensor and rotation
sensors. An NXT digital sensor has two important characteristics. It has its own microcontroller, which
enables the sensor to take readings of its environment itself (as opposed to the NXT doing it), and it
sends its data to the NXT using I2C communication, which allows the sensor to operate independently
and transmit only its readings to the NXT.

Ultrasonic Sensor
The Ultrasonic Sensor is one of the three sensors that give your robot vision [The Light Sensor and Color
Sensor are the others]. The Ultrasonic Sensor enables your robot to see and detect objects. You can also

use it to make your robot avoid obstacles, sense and
measure distance, and detect movement.

The Ultrasonic Sensor measures distance in centimetres and
in inches. It is able to measure distances from 0 to 255
centimetres with a precision of +/- 3 cm.

The Ultrasonic Sensor uses the same scientific principle as bats: it measures distance by calculating the
time it takes for a sound wave to hit an object and return – just like an echo. Large sized objects with
hard surfaces return the best readings. Objects made of soft fabrics or those that are curved [like a ball]
or are very thin or small can be difficult for the sensor to detect.

* Note that two or more Ultrasonic Sensors operating in the same room may interrupt each other’s
readings.

The Ultrasonic Sensor operates in two modes Continuous (default) and Ping. When in Continuous mode
the sensor sends out pings as often as it can and the most recently obtained result is available to the
NXT through a function call (to getDistance() when using LeJos). The function called depends on the
programming language being used.

When in Ping mode, a ping is sent only when a function call is made (to ping() when using LeJos).
Invoking the ping() method switches the sensor into ping mode and sends a single ping. From this single
ping, up to 8 echoes are captured. The return value of a ping is in centimetres. If no echo was detected,
the returned value is 255.

These echoes may be read by making another function call (to int readDistances(int [] distances) when
using LeJos). You provide an integer array of length 8 that contains the data after the method returns. A
delay of approximately 20ms is required between the call to ping() and getDistances(). This delay is not
included in the method. Calls to getDistances() before this period may result in an error or no data being

returned. The normal getDistance() call may also be used with ping, returning information for the first
echo.

Colour Sensor
The Colour Sensor is one of the three sensors that give your robot vision [The Light Sensor and
Ultrasonic Sensor are the others]. The newest Colour Sensor (from HiTechnic) operates by using a

single white LED (light emitting diode) to illuminate the
target and analyses the colour components of the light
reflected by the target's surface and calculates a Colour
Number that is returned to the NXT program.

The Colour Sensor works best
when it is positioned so that it
is not too close to the surface

being tested. The picture on the right should be used as a guide for proper
distance and angle to the surface. The angle prevents the direct reflection
of the light from the LED from coming back into the sensor element, which
can prevent proper colour determination.

The Colour Sensor connects to an NXT sensor port using a standard NXT
wire and digital I2C communications protocol. The Colour Number
calculated by the sensor is refreshed approximately 100 times per second. It can detect an extended
range of more than 15 target colours and the NXT robot can be programmed to react to each colour.

The HiTechnic Colour Sensor is “tuned” to standard LEGO colours. When positioned over a surface, the
Colour Sensor will return a numeric value identifying the target colour. For more in depth information
visit the HiTechnic Colour Sensor page.

The Servo Motor Encoder (Rotation Sensor)
NXT robots can move in many different ways. They can grasp, race, walk, swivel and do much more.
These capabilities come from using the NXT servo motors. Servo motors are different from other

common Lego motors. They are interactive, meaning that
they include a built-in Rotation Sensor or tachometer. This
lets you control your robot’s movements precisely.

The Rotation Sensor measures motor rotations in degrees
or full rotations [accuracy of +/- one degree]. One rotation
is equal to 360 degrees, so if you set a motor to turn 180
degrees, its output shaft will make half a turn. Of course,
you can also simply instruct the motor to run indefinitely or
for a specified amount of time.

The built-in Rotation Sensor in each motor also lets you set different speeds for your motors, and there
are definitely times when you will want to run the motors at less than full power. This is easily done by
setting different power parameters in the software (from -100 to 100).

http://www.hitechnic.com/cgi-bin/commerce.cgi?preadd=action&key=NCO1038

By connecting Lego pieces to the shaft heads, you can transfer power from the motor to your creation.
The motor itself also has several places for attaching Lego pieces. These are most often used to secure
the motor in place.

For more in depth information on the Servo motor including characteristics, efficiency, charts (power,
speed, torque, etc.) and more you can visit this resource titled: NXT Motor Internals.

Sources:

http://lejos.sourceforge.net/nxt/nxj/tutorial/AdvancedTopics/UnderstandingFilesLCPMemTools.htm
http://cache.lego.com/downloads/education/9797_LME_UserGuide_US_low.pdf
http://student.seas.gwu.edu/~darbyt/cs1/lejos.html
http://www.comp.dit.ie/jkelleher/rtf/classmaterial/week5/NXT-Sensors.pdf
http://nxtguide.davidjperdue.com/
http://www.legoengineering.com/nxt-sensors-2.html
http://www.hitechnic.com/cgi-bin/commerce.cgi?preadd=action&key=NCO1038
http://www.philohome.com/nxtmotor/nxtmotor.htm
http://www.enotes.com/topic/Lego_Mindstorms#Programming_languages_2

http://www.philohome.com/nxtmotor/nxtmotor.htm
http://lejos.sourceforge.net/nxt/nxj/tutorial/AdvancedTopics/UnderstandingFilesLCPMemTools.htm
http://cache.lego.com/downloads/education/9797_LME_UserGuide_US_low.pdf
http://student.seas.gwu.edu/~darbyt/cs1/lejos.html
http://www.comp.dit.ie/jkelleher/rtf/classmaterial/week5/NXT-Sensors.pdf
http://nxtguide.davidjperdue.com/
http://www.hitechnic.com/cgi-bin/commerce.cgi?preadd=action&key=NCO1038
http://www.philohome.com/nxtmotor/nxtmotor.htm
http://www.enotes.com/topic/Lego_Mindstorms%23Programming_languages_2

